• I Nyoman Tri Anindia Putra Trian STMIK STIKOM Indonesia
  • Ketut Sepdyana Kartini STMIK STIKOM Indonesia


Until now, the facial recognition method is still very difficult to do, especially when the facial confirmation process is accurate in real time. Facial recognition methods that have been tested, such as eigenface, Local Binary Pattern Histogram (LBPH), and fisherface, are feasible methods to be tested directly by applying these three methods to facial recognition-based surveillance systems. This study aims to compare the level of real-time accuracy in personal identification on the three methods through 4 parameters, namely accuracy, FAR (False Acceptance Rate), FRR (False Rejection Rate), and time condition, namely lighting conditions based on time, namely morning, noon, afternoon and evening. Based on the results of the tests that have been done, the average accuracy is obtained, namely the highest average with the eigenface method with an accuracy of 73.64%, FAR 0.11%, FRR 0.15%, the LBPH method obtains the highest average with an accuracy of 80, 91%, FAR 0.13%, FRR 0.07%, and finally fisherface got the highest average with 90.00% accuracy, 0.05% FAR, 0.05% FRR, in identifying personal. The results obtained by the Fisherface method tend to have the highest accuracy value based on the average both in terms of accuracy and the lighting conditions that have been tested.


Download data is not yet available.


E. Winarno, A. Harjoko, A. M. Arymurthy, and E. Winarko, “Improved real-time face recognition based on three level wavelet decomposition-principal component analysis and mahalanobis distance,” J. Comput. Sci., vol. 10, no. 5, pp. 844–851, 2014.

E. Winarno, A. Harjoko, A. M. Arymurthy, and E. Winarko, “Face recognition based on symmetrical half-join method using stereo vision camera,” Int. J. Electr. Comput. Eng., vol. 6, no. 6, pp. 2818–2827, 2016.

M. Wibowo and U. G. Mada, “Towards Pose-Robust Face Recognition on Video,” no. March, 2018.

L. Lin, G. ZHAO, Y. Tang, J.-D. TIAN, and S.-Y. HE, “Illumination Compensation for Face Recognition Using Only One Image,” Acta Autom. Sin., vol. 39, pp. 2090–2099, Dec. 2013.

K. Delac, M. Grgic, and S. Grgic, “Independent comparative study of PCA, ICA, and LDA on the FERET data set,” Int. J. Imaging Syst. Technol., vol. 15, no. 5, pp. 252–260, 2005.

I. N. T. A. Putra and A. Harjoko, “Pengenalan Wajah Berbasis Mobile Menggunakan Fisherface dan Distance Classifier,” J. Sains dan Teknol., vol. 7, no. 1, pp. 135–145, 2018.

I. G. P. S. Wijaya, K. Uchimura, and G. Koutaki, “Face Recognition Using Holistic Features and Simplified Linear Discriminant Analysis,” TELKOMNIKA Indones. J. Electr. Eng., vol. 10, no. 4, 2012.

M. Mentari, Y. A. Sari, and R. K. Dewi, “Deteksi Kanker Kulit Melanoma dengan Linear Discriminant Analysis-Fuzzy k-Nearest Neigbhour Lp-Norm,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 2, no. 1, p. 34, 2016.

Fandiansyah, J. Y. Sari, and I. P. Ningrum, “Pengenalan Wajah Menggunakan Metode Linear Discriminant Analysis dan k Nearest Neighbor,” vol. 11, no. June, pp. 1–9, 2017.

V. Lusiana, “Deteksi Tepi pada Citra Digital menggunakan Metode Kirsch dan Robinson,” Teknol. Inf. Din., vol. 18, no. 2, pp. 182–189, 2013.

I. G. S. A. I Nyoman Tri Anindia Putra,Ida Bagus Gede Dwidasmara, “PERANCANGAN DAN PENGEMBANGAN SISTEM ABSENSI REALTIME MELALUI METODE PENGENALAN WAJAH,” J. Sains Teknol., vol. 3, no. 2, pp. 2303–3142, 2014.

Pratiwi, Y. E., Kiftiah, M., & Ramadhani, E. W. Penentuan Nilai Eigen Dan Vektor Eigen Matriks Interval, 6(02), 17–26 2017.

Yambor, W.S. Analysis of PCA- Based and Fisher Discriminant- Based Image Recognition Algorithms, Tesis of Master, Colorado State University 2000.

Simaremare, H., & Kurniawan, A. (2016). Perbandingan Akurasi Pengenalan Wajah Menggunakan Metode LBPH dan Eigenface dalam Mengenali Tiga Wajah Sekaligus secara Real-Time. Jurnal Sains, Teknologi Dan Industri, 14(1), 66–71.

S. Z. Li and J. A.K., Handbook of face recognition. Springer-Verlag London Limited, 2011.

B. Klare and A. K. Jain, “On a taxonomy of facial features,” in Fourth IEEE Int’l Conf. on Biometrics Theory, Applications and Systems (BTAS), Crystal City, Washington D.C., September 28-30 2010.

J. Lu, N. P. Kostantinos, and N. V. Anastasios, “Face recognition using LDA- based algorithms,” IEEE Trans.Neural Networks, vol. 14, no. 1, pp. 195–200, 2003.

Turk, M.A., Pentland, and A.P., “Eigenfaces for recognition,” J. Cogn. Neurosci., vol. 3, no. 1, pp. 71–86, 1991.

P. Belhumeur, J. Hespanha, and D. Kriegman., “Using discriminant eigenfeatures for image retrieval,” PAMI, vol. 19, no. 7, pp. 711–720, 1997.

A. M. Martinez and A. C. Kak, “PCA versus LDA,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 2, pp. 228–233, 2001.

R. Shyam and Y. N. Singh, “A Taxonomy of 2D and 3D Face Recogni- tion Methods,” in Proc. 1st IEEE Int’l Conf. on Signal Processing and Integrated Network (SPIN 2014), Feb 2014, pp. 749–754.

R. Shyam and Y. N. Singh, “Face recognition using augmented local binary patterns and bray curtis dissimilarity metric,” Communicated to International Conference On Advances In Pattern Recognition(ICAPR 2015) to be held on 04-07 Jan 2015, ISI, Kolkata.

K. Lee, J. Ho, and D. Kriegman, “Acquiring linear subspaces for face recognition under variable lighting,” IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 27, no. 5, pp. 684–698, 2005. [Online]. Available:

Kaehler, D., dan Bradski, G., Learning OpenCV, penerbit O’Reilly Media Inc, 2008, hal. 9-11.

Timo Ahonen, Abdenour Hadid dan Matti Pietikainen. 2006. Face Description with Local Binary Pattern:Application to Face Recognition. IEEE Transactions On Pattern Analysis And Machine Intelligence, vol. 28 no. 12, halaman 2037-2041.

I. N. Tri, A. Putra, and E. Dwi, “Implementasi Sistem Surveillance Berbasis Pengenalan Wajah pada STMIK STIKOM Indonesia,” vol. XIII, no. 2, pp. 65–72, 2020.




How to Cite